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Abstract	

It	is	proposed	that	a	cognitive	map	encoding	the	relationships	between	entities	in	
the	world	supports	flexible	behaviour,	but	the	majority	of	the	neural	evidence	for	such	a	
system	comes	from	studies	of	spatial	navigation.	Recent	work	describing	neuronal	parallels	
between	spatial	and	non-spatial	behaviours	has	rekindled	the	notion	of	a	systematic	
organisation	of	knowledge	across	multiple	domains.	We	review	experimental	evidence	and	
theoretical	frameworks	that	point	to	principles	unifying	these	apparently	disparate	
functions.	These	principles	describe	how	to	learn	and	use	abstract,	generalisable	knowledge	
and	suggest	map-like	representations	observed	in	a	spatial	context	may	be	an	instance	of	
general	coding	mechanisms	capable	of	organising	knowledge	of	all	kinds.	We	highlight	how	
artificial	agents	endowed	with	such	principles	exhibit	flexible	behaviour	and	learn	map-like	
representations	observed	in	the	brain.	Finally,	we	speculate	on	how	these	principles	may	
offer	insight	into	the	extreme	generalisations,	abstractions	and	inferences	that	characterise	
human	cognition.	
	
	
Introduction	
	

In	the	last	two	decades	and	more,	computational	and	behavioural	neuroscientists	
have	found	formal	explanations	of	neural	signals	that	control	behaviour	in	carefully	
controlled	repetitive	scenarios	(e.g.	(Behrens	et	al.,	2007;	Daw	et	al.,	2006;	O’Doherty	et	al.,	
2004;	Platt	and	Glimcher,	1999;	Schultz	et	al.,	1997)).	In	some	instances,	these	models	
predict	neuronal	activity	with	truly	exquisite	precision	(Cohen	et	al.,	2012;	Gold	and	
Shadlen,	2007;	Schultz	et	al.,	1997)	and	when	paired	with	heavy	computational	resources,	
related	algorithms	have	had	extraordinary	successes	in	training	artificial	agents	to	super-
human	levels	in	games	as	diverse	as	Atari	(Mnih	et	al.,	2015)	and	Go	(Silver	et	al.,	2016).	
However,	there	is	a	stark	gap	between	the	types	of	behaviour	these	models	can	account	for	
and	the	sophisticated	inferences	that	characterize	much	of	human	behaviour.	Human	and	
animal	behaviour	is	flexible.	We	can	choose	how	to	act	by	exploiting	actions	that	have	
worked	in	the	past,	but	also	based	on	experiences	that	are	only	loosely	related;	we	can	
imagine	the	consequences	of	entirely	novel	choices.	We	can	abstract	important	features	of	
experiences	and	generalise	them	to	new	situations.	These	differences	were	clearly	
articulated	by	Tolman	as	he	watched	rats	make	flexible	inferences	in	complex	mazes.	They	
would	learn	rich	details	of	the	mazes	in	the	absence	of	any	rewards	and	to	the	benefit	of	
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future	behaviour.	For	example,	after	unrewarded	exposure	to	mazes,	rats	would	take	short-
cuts	to	reach	rewards	(Tolman	and	Honzik,	1930)	or	would	find	new	routes	when	old	ones	
were	blocked	(Tolman	et	al.,	1946).		Such	behaviours	inspired	Tolman	to	coin	the	term	
‘cognitive	map’	referring	to	a	rich	internal	model	of	the	world	that	accounts	for	the	
relationships	between	events,	and	predicts	the	consequences	of	actions.		

	

For	Tolman,	this	cognitive	map	was	a	systematic	organisation	of	knowledge	that	spanned	all	
domains	of	behaviour	(Tolman,	1948).	However,	its	biggest	influence	in	cognitive	
neuroscience	has	been	in	the	study	of	spatial	behaviours	(O’Keefe	and	Nadel,	1978),	
perhaps	because	the	literal	interpretation	of	the	term	‘map’	gives	clear	predictions	of	neural	

Figure	1:	The	hippocampal	zoo.	A)	Anatomical	location	of	the	hippocampus	and	entorhinal	cortex		
in	different	species.	Adapted	from	(Strange	et	al.,	2014).	B)	A	variety	of	cells	in	the	hippocampal	
formation	represent	different	spatial	variables.	Place	cells	(O’Keefe	and	Nadel,	1978)	are	active	
when	an	animal	is	in	a	single	(sometimes	multiple)	location.	Grid	cells	(Hafting	et	al.,	2005)	are	
active	when	an	animal	is	in	one	of	multiple	locations	on	a	triangular	lattice.	“Social	place	cells”	
(Danjo	et	al.,	2018;	Omer	et	al.,	2018)	are	active	in	one	animal	when	it	observes	another	animal	is	
in	a	particular	location.	Head-direction	cells	(Taube	et	al.,	1990)	are	active	when	an	animal’s	head	is	
facing	a	particular	direction.	Object-vector	cells	(Høydal	et	al.,	2018)	are	active	when	an	animal	is	in	
a	particular	direction	and	distance	from	any	object.	Reward	cells	(Gauthier	and	Tank,	2018)	are	
active	when	an	animal	is	in	the	vicinity	of	reward.	Boundary	vector	cells		(Lever	et	al.,	2009)	are	
active	at	a	given	distance	away	from	a	boundary	in	a	particular	allocentric	orientation.	Goal	
direction	cells	(Sarel	et	al.,	2017)	are	active	when	the	goal	of	an	animal	is	in	a	particular	direction	
relative	to	its	current	movement	direction.	The	green	‘G’	indicates	the	goal	location.	
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activity.	Even	Tolman	cannot	have	imagined	the	beautiful	precision	with	which	map-like	
representations	are	reflected	in	the	activity	of	single	neurons	in	the	hippocampal-entorhinal	
system	(Figure	1).	The	most	celebrated	of	these	neurons	are	active	at	particular	places	in	
the	map.	‘Place’	cells	in	the	hippocampus	restrict	their	activity	(usually)	to	a	single	location	
in	space	(O’Keefe	and	Nadel,	1978).	‘Grid’	cells	in	the	medial	entorhinal	cortex	fire	at	
multiple	place	fields	equally	placed	on	a	triangular	grid	(Hafting	et	al.,	2005),	and	are	
therefore	able	to	represent	vector	relationships	and	distances	between	different	spatial	
locations	(Bush	et	al.,	2015;	Stemmler	et	al.,	2015).	Along	with	these	come	a	veritable	zoo	of	
less	celebrated	but	equally	remarkable	cells	that	reveal	how	‘knowledge’	is	organised	in	the	
map	(Grieves	and	Jeffery,	2017),	such	as	band	cells	(Krupic	et	al.,	2012),	and	cells	that	
encode	the	vector	relationships	to	borders	(Solstad	et	al.,	2008),	objects	(Høydal	et	al.,	
2018),	rewards	(Gauthier	and	Tank,	2018)	and	goals	(Sarel	et	al.,	2017),	alongside	cells	that	
encode	the	current	head	direction	(Taube	et	al.,	1990);	or	cells	that	encode	the	locations	of	
other	agents	on	the	map	(Danjo	et	al.,	2018;	Omer	et	al.,	2018).			

	
These	spatial	cells	appear	to	have	specialised	functional	representations	such	that	each	
plays	an	important	role	in	understanding	and	navigating	a	2D	world.	Notably,	however,	the	
same	brain	structures	containing	these	cells	play	important	roles	in	neural	processes	that	
relate	to	a	broader	view	of	a	cognitive	map,	such	as	generalisation,	inference,	imagination,	
social	cognition,	and	memory	(Hassabis	et	al.,	2007;	Van	Der	Meer	et	al.,	2012;	Ólafsdóttir	
et	al.,	2015;	Tavares	et	al.,	2015).	It	is	therefore	a	challenge	to	understand	how	such	cells	
might	help	us	organise	knowledge	in	the	complex	high-dimensional	non-spatial	cognitive	
map	that	Tolman	envisaged.	In	this	review,	we	show	how	recent	work	is	beginning	to	find	
unifying	explanations	for	these	apparently	disparate	functions	by	looking	to	ideas	from	
reinforcement	learning	and	statistical	learning,	and	investigate	whether	such	formalisms	
may	not	only	explain	neuronal	responses	in	spatial	tasks,	but	also	provide	opportunities	for	
the	types	of	powerful	inferences	and	generalisations	of	structural	knowledge	that	underlie	
flexible	human	behaviour.		
	
Organising	structural	knowledge	for	flexible	learning			
	

Whilst	Tolman	was	watching	rats	running	in	mazes,	another	hero	of	psychology,	
Harlow,	was	asking	human	and	non-human	primates	to	choose	between	two	stimuli	to	find	
a	reward.	Discriminating	a	rewarding	from	an	unrewarding	stimulus	should	not	require	any	
sophistication	or	flexibility	at	all	–	the	animal	could	just	preferentially	repeat	rewarded	
choices	–	but	Harlow	noticed	something	interesting.	As	subjects	had	more	and	more	
experience	of	the	task	(with	different	stimuli	each	time)	they	got	better	and	better	at	
learning	new	discriminations	(Figure	2A-B).	As	well	as	learning	which	was	the	better	
stimulus,	the	subjects	were	learning	something	abstract	about	how	to	perform	the	
discrimination.	He	termed	this	abstract	knowledge	a	‘learning	set’	(Harlow,	1949).	In	this	
and	the	following	sections,	we	will	contend	that	acquiring	such	a	learning	set	requires	an	
abstract	representation	of	the	structure	of	the	task	that	encodes	relationships	between	task	
events.	This	kind	of	representation	allows	inferences	from	remote	observations,	and	
generalisation	of	information	across	different	tasks	with	similar	structure.		We	will	also	
argue	that	grid	cell	activity	is	an	example	of	such	a	representation	in	the	spatial	domain,	
such	that	grid	cells	encode	statistical	regularities	in	spatial	navigation	that	occur	due	to	the	
common	structure	of	all	two-dimensional	spaces.	
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Figure	2:	The	importance	of	learning	sets	-	Harlow	and	beyond.	We	will	describe	three	tasks	relying	on	
learning	sets.	(Harlow,	1949)	demonstrates	the	learning	of	task	structure	from	repeated	exposure	to	
the	same	task.	(Walton	et	al.,	2010)	and	(Takahashi	et	al.,	2011)	demonstrate	the	implications	of	OFC-
lesions	on	a	part	of	the	learning	set	common	across	many	different	tasks.		A)	Schematic	of	Harlow’s	
task.	Different	instantiations	of	the	task	share	a	common	underlying	structure	(“only	one	object	is	
rewarded”)	that	can	be	exploited	to	facilitate	faster	learning.	B)	Accuracy	data	from	(Harlow,	1949).	
Over	multiple	exposures	to	the	task,	monkeys	acquire	this	underlying	structure,	termed	a	“learning	
set”,	and	use	it	to	learn	faster	in	new	instantiations	of	the	task.	C)	Monkeys	can	also	learn	to	track	
changing	probabilities	of	reward,	but	OFC	lesions	cause	an	intriguing	deficit	whereby	they	can	track	
changes	in	reward	unless	the	best	option	reverses.	D)	This	is	because	they	no	longer	know	which	
recent	choice	caused	which	recent	reward.	In	these	regression	plots,	correct	attribution	between	
choice	and	reward	is	on	the	diagonal.	OFC	lesioned	animals	learn	using	the	off-diagonal	terms	which	
imply	that	if	average	recent	reward	is	high	(low)	the	animal	increases	(decreases)	their	preference	for	
their	average	recent	choice,	ignoring	which	choice	caused	which	reward.	C)	and	D)	Adapted	from	
(Walton	et	al.,	2010).	E)	Takahashi	et	al.	showed	a	similar	effect	in	rodents.	(Wilson	et	al.,	2014)	
demonstrated	that	it	could	be	accounted	for	by	a	model	in	which	the	animal	could	not	distinguish	
latent	states	(reduced	state	diagram	shown).	Here	the	states	“reward	after	left	choice”	and	“reward	
after	right	choice”	are	represented	separately	in	the	model	that	best	accounts	for	control	data.	The	fact	
that	they	are	not	in	the	model	that	best	accounts	for	OFC-lesioned	data	reflects	the	rodents’	inability	to	
pair	the	reward	with	the	choice	that	caused	it.	We	refer	the	reader	to	their	beautiful	paper	for	other	
examples	of	state	space-deficits	caused	by	OFC	lesions.	F)	A	learning	set	for	a	task	is	composed	not	only	
from	the	abstract	structure	common	to	different	realisations	of	a	specific	task	(as	demonstrated	in	
Harlow’s	findings),	but	also	from	basic	knowledge	which	is	generalisable	to	many	tasks.	For	example,	
the	notion	of	contingency	-	that	a	choice	leads	to	the	immediately	following	outcome	-		is	a	feature	of	
many	different	tasks	and	life	experiences.	This	part	of	the	learning	set	underlies	the	results	in	(Walton	
et	al.,	2010)	and	(Takahashi	et	al.,	2011).	The	full	learning	set	model	might	consist	of	many	higher-
order	across-task	learning	sets,	converging	to	different	degrees	on	each	task-specific	learning	set.	
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To	acquire	such	a	learning	set,	you	need	to	learn	abstract	relationships	between	different	
stimuli,	such	as	“if	one	stimulus	is	rewarded,	the	other	is	not”,	or	“the	rewarded	stimulus	
might	change	after	a	number	of	trials”.	Part	of	this	learning	process	includes	learning	basic	
knowledge	about	how	the	task	works.	For	example,	you	need	to	know	the	reason	you	are	
getting	a	reward	now	is	because	of	the	stimulus	you	just	chose,	and	not	the	stimulus	from	3	
trials	ago	or	the	door	that	just	opened	in	the	corridor.	When	lesions	are	made	to	the	ventral	
prefrontal	cortex	(vPFC)	(orbitofrontal	and	ventrolateral	prefrontal	cortex1)	in	macaque	
monkeys,	this	ability	is	abolished	(Rudebeck	and	Murray,	2011;	Walton	et	al.,	2010).	Animals	
no	longer	assign	the	credit	for	each	reward	to	the	contingent	choice	that	caused	it,	but	
instead	to	an	imprecise	running	average	of	recent	choices.	After	vPFC	lesions,	macaques	
that	once	knew	the	structure	of	the	task,	now	learn	by	smooth	temporal	correlations	
(Walton	et	al.,	2010)	(Figure	2C-D).	Whilst	such	a	strategy	can	work	well	in	stable	
environments,	it	leads	to	disastrous	performance	when	behavioural	flexibility	is	required,	
such	as	when	reward	contingencies	change.	These	vPFC	properties	are	not	unique	to	the	
brains	of	macaque	monkeys.	In	humans,	fMRI	signals	in	vPFC	reflect	precise	task	
contingencies	when	other	reward	signals	in	the	brain	do	not	(Jocham	et	al.,	2016).	In	
rodents,	if	unilateral	lesions	are	made	to	OFC,	dopaminergic	cells	in	the	same	hemisphere	
continue	to	report	a	veridical	reward	prediction	error,	but	with	a	prediction	that	no	longer	
reflects	which	choice	has	caused	the	reward	(Takahashi	et	al.,	2011).	
	 	
What	does	it	mean	to	have	a	representation	of	the	structure	of	a	problem?	Thinking	about	
these	issues	more	formally	has	led	to	a	richer	understanding	(Wilson	et	al.,	2014).	In	
reinforcement	learning,	such	behavioural	control	problems	can	be	cast	in	terms	of	trying	to	
find	a	policy	that	will	maximise	long	term	cumulative	reward.	The	problem	is	characterised	
by	states,	𝑠,	and	probabilistic	transitions	between	states,	𝑃(𝑠’|𝑠,𝑎),	which	may	be	
controlled	by	actions,	𝑎.	The	policy,	𝜋,	determines	the	probability	of	choosing	each	action	in	
each	state;	𝜋 = 𝑃(𝑎|𝑠).	If	𝑟	denotes	the	instantaneous	reward	received	at	a	current	state,	
𝑉!	denotes	the	expected	cumulative	reward	over	the	foreseeable	future	under	a	policy,	and	
𝛾	the	discount	factor	weighting	immediate	rewards	higher,	then,	after	some	maths,	our	goal	
becomes	finding	a	policy	that	maximises	value	(the	following	equation):	

𝑉! 𝑠 = 𝔼! 𝑟 + 𝛾 𝑃(𝑠’|𝑠,𝑎)𝑉!(𝑠!)
!!

	

In	this	framework,	the	burden	of	representing	the	problem	structure	is	carried	by	the	state	
definition,	𝑠,	and	the	transitions,	𝑃(𝑠’|𝑠,𝑎)	(Box	1).	These	respectively	describe	how	is	the	
task	divided	up	into	different	elements	–	for	example,	the	state	of	having	just	seen	a	
particular	stimulus	–	and	how	one	element	leads	to	another.	Wilson	and	colleagues	showed	

																																																								
1	There	are	important	differences	between	different	regions	of	the	ventral	frontal	cortex	
and	we	are	aware	that,	by	ignoring	them	here,	we	invite	scepticism	and	irritation	from	our	
colleagues	in	equal	measures.	Given	the	existing	complexity	of	the	argument	we	are	putting	
forward,	we	ask	to	be	excused	our	anatomical	imprecision	and	refer	readers	to	the	
following	papers	for	interesting	discussions	of	these	differences	(Haber	and	Behrens,	2014;	
Rudebeck	and	Murray,	2014;	Rushworth	et	al.,	2011).		It	is	perhaps	worth	noting	here	that,	
in	our	experience,	one	difference	that	predicts	whether	activity	(or	lesion	effects)	will	be	
most	prominent	medially	or	laterally	within	the	ventral	frontal	cortex	pertains	to	whether	it	
reflects	a	computation	that	is	used	to	guide	choices	(medially),	or	a	computation	that	is	
used	to	learn	from	the	outcomes	of	those	choices	(laterally).	
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that	the	credit	assignment	deficits	described	above,	along	with	other	types	of	deficit	
commonly	observed	after	ventral	prefrontal	lesions,	are	predicted	by	a	reinforcement	
learning	agent	that	only	learns	from	immediate	sensory	observations,	and	does	not	assign	
credit	to	abstract	states	(such	as	“I	just	chose	stimulus	A”,	Figure	2E).	It	is	argued,	then,	that	
activity	in	the	OFC	must	encode	the	current	location	in	a	latent,	or	unobserved,	state	space.	
Indeed,	this	exact	information	can	be	decoded	from	the	OFC	fMRI	signal	when	humans	
engage	in	a	complex	task	with	a	well-defined	state	space	(Schuck	et	al.,	2016).		
	
To	account	for	effects	of	learning	set,	however,	a	state	representation	must	do	more	than	
simply	label	the	current	state.	First,	it	must	encode	how	this	state	relates	to	other	states	in	
the	world	(so	an	animal	can	know,	for	example,	that	if	one	state	is	not	rewarded	the	other	
state	likely	is,	or	if	their	spouse’s	wallet	is	on	the	table	then	they	are	more	likely	in	the	
garden	than	the	pub).	Second,	it	must	encode	states	in	a	fashion	that	generalises	across	
different	sensory	realisations	of	the	task.		A	key	feature	of	both	Harlow’s	experiments	and	
the	OFC	tasks	in	(Walton	et	al.,	2010)	is	that	every	example	of	the	task	used	different	
stimuli,	but	animals	improved	on	the	task	nevertheless.	Indeed,	when	monkeys	are	asked	to	
make	economic	choices	between	different	amounts	of	two	juices	A	and	B,	OFC	neurons	
encode	a	rich	variety	of	value	and	task-related	variables	(Padoa-Schioppa	and	Assad,	2006),	
but	when	these	two	juices	are	replaced	with	two	different	juices	C	and	D,	the	same	neurons	
encode	the	exact	same	variables	for	the	new	juices	(Xie	and	Padoa-Schioppa,	2016)	(Figure	
3C-D).	Indeed,	lesions	to	neighbouring	vlPFC	cause	particular	deficits	in	generalising	
knowledge	between	different	stimulus	sets	(Rygula	et	al.,	2010).	
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Figure	3:	MEC	and	OFC	neurons	generalise	across	different	contexts.		A)	In	a	spatial	remapping	
experiment,	animals	are	moved	between	two	different	environments.	Entorhinal	grid	cells	maintain	a	
constant	spatial	phase	structure	(top),	in	contrast	with	the	global	remapping	of	hippocampal	place	cells	
(bottom)	(Bostock	et	al.,	1991;	Leutgeb	et	al.,	2005).	B)	MEC	object	vector	cells	respond	specifically	
when	an	animal	is	at	a	given	direction	and	distance	from	any	object,	regardless	of	identity	of	the	object	
(top).	Cells	with	object-vector	properties	are	also	found	in	the	hippocampus	(bottom).	These	cells,	
however,	respond	to	only	a	subset	of	the	objects	(bottom).	MEC	data	from	(Høydal	et	al.,	2018),	
Hippocampal	data	from	(Deshmukh	and	Knierim,	2013).	C)	When	monkeys	choose	between	pairs	of	
different	juices	offered	in	different	amounts,	OFC	neurons	encode	the	same	decision	variables	across	
contexts,	such	that	two	neurons	‘supporting’	the	same	decision	for	one	pair	of	juices	also	support	the	
same	decision	in	different	pairs	of	juices	(top).	Firing	rate	of	an	example	OFC	neuron	as	a	function	of	
the	quantity	ratio	of	the	two	juices	(bottom).	Black	symbols	represent	the	percentage	of	trials	in	which	
the	monkey	chose	the	less	preferred	juice.	Red	symbols	represent	the	average	firing	rate.	D)	
Population	analysis	demonstrating	OFC	neurons	generalise	over	different	contexts.	Each	task-related	
OFC	neuron	was	classified	according	to	its	strongest	encoded	decision	variable	(offer	value,	chosen	
value,	chosen	juice)	and	the	sign	of	this	encoding.	This	was	done	in	two	separate	contexts	(A:B	choice	/	
C:D	choice	shown	in	rows/columns).	Numbers	are	cell	counts	for	encoding	a	pair	of	variables	in	the	two	
contexts.	Statistical	significance	was	assessed	via	a	null	distribution	(greyscale	colors	are	P-values).	The	
strong	diagonal	indicates	neurons	tend	to	encode	the	same	variable	with	the	same	sign	in	both	
contexts.	(C)	and	(D)	adapted	from	(Xie	and	Padoa-Schioppa,	2016).	
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Generalising	spatial	representations		
	

So	far,	we	have	argued	that	vPFC	representations	in	learning	tasks	have	three	
important	computational	properties.	(1)	They	encode	‘location’	in	a	state	space	of	the	task.			
Their	representation	of	location	(2)	embeds	structural	knowledge	of	the	relationships	
between	different	states,	and	(3)	can	be	generalised	across	tasks	with	shared	statistical	
structure	but	different	sensory	events.	These	three	features	of	OFC	activity	resemble	the	
key	computational	properties	of	entorhinal	cells	in	spatial	domains.	Grid	cells	famously	
encode	location	in	a	spatial	task.	They	do	so	with	a	representation	that	has	implicit	within	it	
knowledge	of	the	spatial	relationships	between	all	locations,	allowing	remote	inferences	
(Bush	et	al.,	2015;	Stemmler	et	al.,	2015)	(for	further	convincing	see	next	section),	and	this	
structural	code	generalises	across	different	sensory	environments.	To	understand	this	final	
point,	consider	what	happens	in	a	hippocampal	remapping	experiment,	in	which	animals	are	
moved	between	two	different	boxes	(for	example,	with	different	wall	colours).	In	these	
experiments	hippocampal	place	cells	remap	when	the	sensory	environment	changes	
(Bostock	et	al.,	1991;	Leutgeb	et	al.,	2005).	Neighbouring	place	cells	in	one	environment	are	
unlikely	to	be	neighbours	in	the	other.	By	contrast,	except	for	a	rigid	body	change,	grid	cells	
do	not	remap	between	environments.	Within	a	module,	phase	neighbours	in	one	
environment	are	phase	neighbours	in	the	other	(Fyhn	et	al.,	2007)	(Figure	3A).	The	
entorhinal	representation	of	location	therefore	embeds	the	structural	information	about	
general	relationships	in	2D	space	that	is	common	amongst	all	environments.		Similarly,	
object	vector	cells	in	entorhinal	cortex	activate	for	any	object	present	in	the	environment	
(Høydal	et	al.,	2018),	whereas	similar	cells	in	hippocampus	activate	for	only	a	subset	of	
objects	(Deshmukh	and	Knierim,	2013)	(Figure	3B).		

	
With	these	relationships	in	mind,	it	is	intriguing	that	deficits	in	learning	set	can	be	achieved	
by	transection	of	the	fornix	(which	disconnects	frontal	cortex	from	the	hippocampus)	
(M’Harzi	et	al.,	1987)	or	by	fronto-temporal	disconnection	(Browning	et	al.,	2006).	Similarly,	
interactions	between	OFC	and	hippocampus	appear	to	be	important	for	correctly	updating	
task	representations	in	humans	(Boorman	et	al.,	2016)	and	rodents	(Wikenheiser	et	al.,	
2017).	It	is	therefore	interesting	to	understand	how	we	can	relate	these	more	general	forms	
of	behaviour	to	hippocampal	representations	familiar	from	spatial	navigation	tasks.		
	
These	relationships	may	be	more	than	simply	theoretical.	By	casting	reinforcement	learning	
problems	in	continuous	but	non-spatial	domains,	recent	studies	suggest	that	place	and	grid	
cells	may	have	a	broader	role	than	the	coding	of	physical	space.	These	studies	show	activity	
of	cells	in	the	same	regions	as	place	and	grid	cells,	measured	either	with	fMRI	or	directly,	
code	for	non-spatial	information	in	a	manner	analogous	to	the	coding	of	spatial	information.		
	
In	humans,	it	is	possible	to	record	grid-like	activity	during	virtual	reality	navigation	either	
directly	from	the	activity	of	entorhinal	cells	during	surgery	(Jacobs	et	al.,	2013)	or	indirectly	
with	fMRI	(Doeller	et	al.,	2010).	Whilst	fMRI	cannot	give	access	to	cellular	activity	directly,	
the	hexagonal	symmetry	of	the	grid	pattern	has	a	striking	shadow	in	the	fMRI	signal.	As	
subjects	move	in	the	VR	environment,	fMRI	activity	exhibits	a	6-fold	oscillation	as	a	function	
of	running	direction	(Doeller	et	al.,	2010)	(Figure	4A-B).	Notably,	this	pattern	can	be	
observed	not	only	when	subjects	navigate	in	virtual	spatial	worlds,	but	also	when	they	are	
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engaged	in	an	operant	non-spatial	task	that	has	the	same	statistical	structure	as	space	(2D	
continuous	organisation)	(Constantinescu	et	al.,	2016).	Instead	of	moving	in	space,	subjects	
watch	as	a	cartoon	bird	morphs	in	two	dimensions	(the	lengths	of	the	neck	and	legs).	Their	
task	is	to	predict	when	these	birds	will	match	the	appearance	of	one	of	several	target	birds	
that	are	associated	with	different	rewards.	The	instantaneous	change	in	the	appearance	of	
the	bird	describes	a	vector	in	a	2D	conceptual	space	defined	by	the	neck-	and	leg-lengths,	
and	grid-like	coding	is	inferred	by	looking	for	a	6-fold	oscillation	in	fMRI	activity	as	a	function	
of	this	vector.	This	pattern	can	be	observed	in	entorhinal	cortex	but	also	in	other	brain	
regions	including	ventral	frontal	cortex	(Constantinescu	et	al.,	2016)	(Figure	4C).	By	contrast,	
in	hippocampus,	cells	fire	to	specific	abstract	stimuli,	such	as	Jennifer	Aniston	(Quiroga	et	
al.,	2005),	and	therefore	code	information	in	a	fashion	analogous	to	place	cells	in	spatial	
domains.		
	
	

	

	
Similarly,	for	rodents,	the	task	of	“holding	a	lever	whilst	a	tone	increases	in	frequency,	and	
then	releasing	it	at	a	target	frequency	to	get	a	reward”	is	not	obviously	a	spatial	one,	but	it	
has	a	topology	familiar	from	space	-	one	frequency	leads	to	the	next	in	the	operant	box	in	
the	same	way	as	one	place	leads	to	the	next	on	a	linear	track.	When	rodents	perform	this	
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Figure	4:	Generalising	spatial	representations.	A)	Logic	behind	measuring	grid	cells	with	fMRI.	
Trajectories	through	a	2-dimensional	space	can	be	either	aligned	or	misaligned	with	the	axes	of	the	
grid	code	(white	lines	denote	grid	axes).	Greater	signal	for	trajectories	aligned	versus	misaligned	
with	the	grid	results	in	a	hexagonally	symmetric	sinusoidal	modulation	of	the	fMRI	signal	with	
movement	direction.	Adapted	from	(Doeller	et	al.,	2010).	B)	This	modulation	of	the	fMRI	signal	–	
providing	evidence	for	grid	cells	–	is	observed	in	entorhinal	cortex	(ERH)	when	participants	navigate	
through	virtual	reality	spatial	worlds	(Doeller	et	al.,	2010).	Left	is	an	aerial	view	of	the	spatial	task	
map.	C)	The	same	signal	is	observed	when	participants	navigate	through	an	abstract	conceptual	
space	defined	by	two	continuous	dimensions:	the	neck	length	and	leg	length	of	“stretchy	birds”,	
suggesting	grid	cells	code	for	non-spatial	dimensions	(Constantinescu	et	al.,	2016).	D)	Cells	in	the	
hippocampus	fire	at	specific	sound	frequencies	in	a	non-spatial,	sound	manipulation	task	(bottom)	
in	a	manner	analogous	to	the	representation	of	spatial	locations	in	place	cells	on	a	linear	track	
(top).	In	both	panels,	each	horizontal	line	shows	normalised	activity	of	one	cell,	as	a	function	of	
either	distance	along	a	linear	spatial	track	or	sound	frequency.	Cells	are	ordered	according	to	the	
position	of	the	firing	field.	Top	adapted	from	(Miao	et	al.,	2015)	and	bottom	from	(Aronov	et	al.,	
2017).	E)	Grid-like	coding	in	entorhinal	cortex	of	a	linear	spatial	track	(top)	and	progression	through	
the	sound	manipulation	task	(bottom).	Top	adapted	from	(Yoon	et	al.,	2016)	and	bottom	from	
(Aronov	et	al.,	2017).	
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task	(Aronov	et	al.,	2017),	hippocampal	cells	exhibit	place-like	firing	fields,	but	for	different	
frequencies	rather	than	places,	and	entorhinal	cells	(including	spatial	grid	cells)	exhibit	
multiple	distinct	fields	at	different	frequencies	that	resemble	the	firing	fields	of	grid	cells	on	
a	linear	track	(Yoon	et	al.,	2016)	(Figure	4D-E).		Grid	cells	also	encode	gaze	location	on	a	2D	
image	in	both	nonhuman	(Killian	and	Buffalo,	2018)	and	human	primates	(Julian	et	al.,	2018;	
Nau	et	al.,	2018).		
	
There	is	evidence,	then,	that	place	and	grid	patterns	are	neither	unique	to	spatial	navigation	
nor,	in	humans	at	least,	unique	to	the	hippocampal	formation	(see	also	(Jacobs	et	al.,	
2013)).	Instead	they	may	reflect	the	2D	topology	that	is	inherent	to	space,	as	well	as	
characterize	other	domains.	These	results	suggest	the	role	of	place	and	grid	cells	in	spatial	
cognition	is	a	specific	instance	of	more	general	coding	mechanisms	realised	in	the	
hippocampus	and	connected	regions.	
	
	
Unifying	spatial	and	non-spatial	coding	under	a	common	framework	
	

In	order	to	understand	more	formally	what	this	means,	it	is	useful	to	return	to	the	RL	
framework	laid	out	in	the	previous	section	(and	in	Box	1).	Because	RL	is	a	general	
framework,	it	is	not	limited	to	explaining	operant	tasks.	It	can	equally	easily	be	used	to	give	
a	fresh	perspective	on	the	spatial	navigation	problem	(Gustafson	and	Daw,	2011).	For	
example,	consider	a	rat	running	on	a	linear	track.	Using	the	RL	framework,	we	can	express	
this	task	by	choosing	our	states	(s)	to	be	the	different	locations	along	the	track	(Figure	5A).	
The	probability	that	the	rat	moves	from	state	to	state	depends	on	its	policy	and	if	given	by	
𝔼! 𝑃(𝑠’|𝑠,𝑎) ,	however	if	we	ignore	the	effects	of	policy	and	assume	that	all	movement	is	
through	diffusion	(random	walk	on	the	graph),	then	this	same	equation	tells	us	the	
environment’s	transition	probabilities	between	states	(T).	This	matrix	effectively	tells	us	
which	states	are	neighbours	and	therefore	on	a	linear	track	encapsulates	the	1-dimensional	
topology	of	the	problem	space	(Figure	5A).	It	is	a	useful	matrix	to	know.	If	you	are	planning	
your	future	and	want	to	know	where	you	will	likely	be	at	the	next	time-step,	you	can	simply	
multiply	your	current	state	vector,	s,	by	T	to	give	Ts.	In	two	time-steps,	your	state	
probability	distribution	will	be	T2s,	and	in	3-steps	T3s	etc	(Figure	5A).		

	
This	type	of	future-thinking	is	an	example	of	model-based	reinforcement	learning,	where	an	
agent	that	knows	the	states	and	transitions	(and	therefore	has	a	‘model’	of	the	world)	can	
simulate	its	future	step-by-step	and	make	decisions	about	which	future	is	best	(Daw	et	al.,	
2005,	2011;	Sutton	and	Barto,	1998).	Whilst	there	is	strong	evidence	for	this	type	of	future	
projection	at	choice	points	in	spatial	tasks	(Doll	et	al.,	2015;	Johnson	and	Redish,	2007),	it	is	
very	different	in	spirit	to	how	we	think	about	most	navigation	problems.	In	navigation	
problems,	instead	of	sequentially	planning	through	each	neighbouring	location,	agents	are	
able	to	use	the	known	Euclidian	properties	of	2D	space	to	infer	local	vectors	that	will	
connect	distant	points.	Can	similar	inferences	be	made	in	RL	state-spaces?	Without	delving	
deep	into	the	mathematics,	there	is	a	set	of	vectors	from	which	it	is	possible	to	compute	all	
of	the	n-step	transition	matrices	(T,T2,T3	…	Tn…)	by	simple	linear	combination.		These	are	the	
eigenvectors	of	T	(Figure	5A).	These	vectors	linearly	encode	all	futures	and	from	them	it	is	
easy	to	compute	distances	between	any	pairs	of	states	without	the	need	for	expensive	step-
by-step	simulation	(Baram	et	al.,	2017;	Stachenfeld	et	al.,	2017).	For	continuous	worlds	
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these	eigenvectors	are	periodic	and	for	2D	worlds,	they	have	grid-like	properties	(Dordek	et	
al.,	2016;	Stachenfeld	et	al.,	2017)	(Figure	5B).			
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Figure	5:	Unifying	spatial	and	non-spatial	representations	under	a	common	framework.	A)	
Reinforcement	learning	can	offer	a	fresh	perspective	on	spatial	cognition	by	considering	
locations	as	states.	For	example,	a	linear	track	can	be	thought	of	as	a	series	of	neighbouring	
states.	This	1D	topology	can	be	represented	in	a	states	by	states	transition	matrix	T,	with	
element	Ti,j	corresponding	to	the	probability	of	transitioning	from	state	i	to	state	j.	Thus,	this	
matrix	represents	structure.	Indeed,	multiplication	of	the	current	state,	s,	by	Tn	gives	a	
distribution	over	state	occupancy	n	steps	into	the	future.	Notably,	eigenvectors	of	this	transition	
matrix	are	periodic,	suggesting	they	contain	non-local	knowledge	about	the	structure	that	may	
be	useful	for	computing	distances	(see	D).	B)	Grid	cell-like	firing	fields	can	be	obtained	by	casting	
2D	space	under	this	state	space	framework.	The	eigenvectors	of	the	covariance	of	2D-distributed	
place	cells	(obtained	by	nonnegative	principal	component	analysis,	PCA),	of	2D	transition	
matrices,	and	of	successor	representations	of	2D	state	spaces	are	all	grid-like,	as	are	units	of	an	
artificial	neural	network	(ANN)	tasked	with	predicting	2D-distributed	place	cells	(PCs)	and	head	
direction	cells	(HDCs).	Figures	adapted	from	(Dordek	et	al.,	2016)	(left),	(Stachenfeld	et	al.,	2017)	
(middle)	and	(Banino	et	al.,	2018)	(right).	C)	These	grid-like	representations	embed	structural	
knowledge	of	the	relationships	between	states.	Since	the	eigenvectors	of	T	are	also	the	
eigenvectors	of	the	successor	representation,	they	can	be	used	to	compute	approximate	
distances	between	all	pairs	of	states,	which	can	be	used	to	facilitate	planning	(top:	element	i,j	of	
the	matrix	is	the	distance	between	state	i	and	j;	lighter	colour	denotes	larger	distance).	Grid	
codes	provide	a	basis	for	vector-based	navigation	(Bush	et	al.,	2015),	allowing	the	ANN	with	grid-
like	units	to	take	shortcuts	(bottom)	(Adapted	from	(Banino	et	al.,	2018)).	D)	Using	
representations	that,	rather	than	encoding	current	location,	are	predictive	of	successive	states	
(successor	representation),	it	is	possible	to	explain	policy	dependent	phenomena	in	the	
hippocampal	formation.	For	example,	if	an	animal	moves	only	one	way	down	a	linear	track,	
successor	representations	skew	towards	the	start	of	the	track	to	predict	their	future	state,	as	
observed	in	hippocampal	place	cells.	Figure	adapted	from	(Stachenfeld	et	al.,	2017).	E)	This	same	
framework	can	explain	the	neural	representation	in	hippocampus	and	entorhinal	cortex	of	a	
discrete,	non-spatial	state	space.	The	true	underlying	graph	structure	of	this	state	space	can	be	
reconstructed	from	the	neural	activity,	suggesting	these	regions	represent	discrete	as	well	as	
continuous	tasks.	Adapted	from	(Garvert	et	al.,	2017).	
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It	is	notable	that,	because	place	cells	index	overlapping	states	in	a	2D	world,	these	
eigenvectors	are	also	the	principal	components	of	place	cell	activity	(Dordek	et	al.,	2016;	
Stachenfeld	et	al.,	2017).		The	eigen/grid	code	can	therefore	also	be	thought	of	as	a	code	
that	captures	the	variance	in	the	place-cell	population	in	an	information-efficient	manner.	
Indeed,	when	a	recurrent	neural	network	is	trained	to	predict	place	cell	(and	head	direction	
cell)	activity	(Banino	et	al.,	2018),	or	location	(Cueva	and	Wei,	2018),	as	it	navigates	around	
an	open	field,	it	develops	grid-like	cells	as	its	preferred	linear	representation	(Figure	5B).	By	
using	these	cells	in	more	complex	environments,	it	can	solve	navigation	problems	that	
require	vector	navigation	(such	as	finding	short-cuts	that	have	never	previously	been	taken)	
(Banino	et	al.,	2018)	(Figure	5C).	

	
To	date,	we	have	been	considering	how	to	represent	likely	future	experiences	in	situations	
where	the	world	has	useful	structure	but	behaviour	is	random.	In	fact,	because	transitions	
depend	on	choices,	the	expected	transition	probabilities,	T,	change	if	the	animal	shows	
statistical	regularity	in	its	behaviour	(for	example,	if	the	animal	likes	to	approach	food-
sources).	This	policy-dependence	can	be	harnessed	to	make	predictions	about	hippocampal	
representations	that	are	not	immediately	obvious	from	spatial	considerations	alone.	To	do	
this,	it	is	necessary	to	re-envisage	the	place	cell	representation.	Instead	of	coding	where	the	
animal	is	now,	once	an	animal	becomes	familiar	with	an	environment,	it	is	possible	to	
encode	its	best	estimate	of	where	it	will	be	in	the	imminent	future.	This	is	clearly	a	useful	
representation	for	controlling	behaviour,	as	it	allows	the	animal	to	rapidly	evaluate	which	
local	choices	have	profitable	futures.	In	reinforcement	learning,	this	is	termed	a	successor	
representation	(Dayan,	1993)	as	it	predicts	the	expected	successor	states.	By	assuming	that	
the	place	cells	encode	these	successors	rather	than	current	location,	it	is	possible	to	account	
for	a	number	of	seemingly	disparate	findings	in	the	place	cell	literature,	such	as	the	
tendency	of	place	fields	to	stretch	slowly	towards	the	start	of	a	1-way	linear	track	or	to	
clump	in	high	densities	around	rewarding	locations	(Stachenfeld	et	al.,	2017)	(Figure	5D).		
	
This	general	framework	goes	some	way	to	explaining	why	place	and	grid	representations	are	
not	unique	to	spatial	situations,	but	also	implies	that	they	should	not	be	unique	to	
continuous	environments.	Whilst	this	is	an	ongoing	topic	of	investigation,	there	is	suggestive	
evidence	that	it	will	be	a	profitable	one.	In	humans,	FMRI	similarity	measures	in	
hippocampus	(Garvert	et	al.,	2017;	Schapiro	et	al.,	2013;	Stachenfeld	et	al.,	2017)	and	
entorhinal	cortex	(Garvert	et	al.,	2017)	respect	the	statistical	transitions	of	discrete	state-
spaces	even	when	subjects	are	unaware	that	transitions	are	non-random.	By	examining	
these	representations	it	is	possible	to	reconstruct	directly	from	the	neural	data	state	
distance	matrices	that	resemble	the	true	transition	or	successor	distances	between	states	
(Figure	5E).	In	operant	tasks,	rather	than	simulating	all	possible	transitions	online,	there	is	
evidence	human	behaviour	relies	on	precompiled	transition	distances	consistent	with	the	
successor	(or	eigen-)	representation	(Momennejad	et	al.,	2017a)	and	that	these	
precompiled	distances	rely	on	offline	activity	in	hippocampus	and	ventral	frontal	cortex	
(Momennejad	et	al.,	2017b).	Similarly,	in	a	rodent	operant	task,	a	manipulation	of	either	
hippocampus	or	orbitofrontal	cortex	prevents	the	animals	from	using	the	state	transition	
structure	to	guide	their	next	choice	(Miller	et	al.,	2017,	2018).		
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Inferences,	abstractions	and	factorised	representations	of	tasks	
	

Within	either	a	reinforcement	learning	task	or	a	spatial	environment,	then,	a	clever	
representation	of	how	states	are	related	can	allow	for	flexible	inferences.	But	how	does	the	
brain	come	by	such	a	representation	each	time	it	encounters	a	new	problem?	In	this	
section,	we	argue	that	structural	knowledge	can	be	abstracted	away	from	its	sensory	inputs	
and	therefore	generalises	to	new	environments,	state	spaces	and	tasks.	We	argue	that	
some	structural	representations	are	broadly	required	across	many	tasks	that	require	flexible	
inferences	and	rapid	learning.		
	
As	discussed,	such	inferences	are	routinely	made	by	animals	in	the	spatial	domain.	One	way	
to	understand	how	an	animal	might	take	a	new	shortcut,	for	example,	is	to	consider	that	the	
statistical	structure	of	2D	space	places	strong	constraints	on	what	state	transitions	are	
possible.	When	the	animal	is	moving	in	a	spatial	environment,	it	samples	some	of	those	
states	and	transitions,	and	can	use	this	prior	structural	knowledge	to	fill	in	many	states	and	
transitions	that	it	has	not	seen,	but	are	implied	by	the	2D	nature	of	the	problem.	Are	there	
other	situations	in	nature	where	similar	constraints	might	apply?	Are	there	non-spatial	
scenarios	where	humans	and	animals	can	make	structural	inferences	with	no	prior	
experience	of	a	problem?	
	
To	find	them,	we	don’t	have	to	look	far,	either	in	topological	complexity	or	in	neural	
anatomy.	If	animals	are	independently	taught	that	they	should	choose	stimulus	A	over	B	
and	B	over	C,	they	will	infer	that	they	should	choose	A	over	C	on	first	presentation	–	a	
phenomenon	known	as	transitive	inference	(Burt,	1911;	Dusek	and	Eichenbaum,	1997;	von	
Fersen	et	al.,	1991;	Mcgonigle	and	Chalmers,	1977)	(Figure	6A).	In	primates,	such	lists	can	
be	long	(e.g.	ABCDEFG),	and	can	be	flexibly	reconfigured	–	for	example	stitched	together	by	
presentation	of	the	critical	link	(Treichler	and	Van	Tilburg,	1996).	Similarly,	animals	can	
stitch	together	temporally	distinct	episodes	into	a	linear	time	representation,	and	use	this	
representation	to	make	causal	inferences.	In	a	sensory	preconditioning	paradigm,	for	
example,	animals	are	taught	that	A	leads	to	B	and	later	that	B	leads	to	reward	(Jones	et	al.,	
2012).	When	they	are	later	asked	to	choose	between	A	and	a	control,	they	choose	A	–	the	
stimulus	that	implies	a	path	to	reward.	Whilst	it	is	possible	to	solve	both	of	these	tasks	by	
simpler	associative	mechanisms,	in	the	case	of	transitive	inference,	at	least,	evidence	
strongly	suggests	that	animals	instead	rely	on	abstract	knowledge	of	the	linear	structure	
(Gazes	et	al.,	2012;	Jensen	et	al.,	2015,	2017;	Lazareva	and	Wasserman,	2012).	For	sensory	
preconditioning,	the	jury	is	still	out	in	animals,	but	any	reader	who	was	able	to	decipher	the	
plots	of	“Pulp	Fiction”	or	“Kill	Bill”	from	the	sporadic,	interleaved,	and	often	time-reversed	
episodes	will	know	the	answer	for	humans	(Figure	6E).	Notably,	both	transitive	inference	
and	sensory	preconditioning	require	hippocampus	(Dusek	and	Eichenbaum,	1997;	Gilboa	et	
al.,	2014;	Wikenheiser	and	Schoenbaum,	2016),	entorhinal	cortex	(Buckmaster	et	al.,	2004)	
and	ventral	prefrontal	cortex	(Jones	et	al.,	2012;	Koscik	and	Tranel,	2012).	For	example,	
manipulations	to	any	of	these	structures	will	preserve	an	animal’s	preference	for	A	over	B	or	
B	over	C,	but	abolish	the	preference	for	A	over	C	(even	though	A	has	been	rewarded	many	
times	more	than	C)	(Figure	6B).		
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Figure	6:	Transitive	inference	and	structural	constraints	on	inference.	A)	Breakdown	of	experience,	
inference,	and	choice	at	test	time	in	Spatial	navigation	and	transitive	inference	both	rely	on	chaining	
together	separately	observed	sequences	of	observations.	B)	(Dusek	and	Eichenbaum,	1997)	show	
that	transitive	inference	is	hippocampally	dependent	in	rats.	Rats	were	trained	on	pairs	of	
consecutive	stimuli,	in	which	the	rewarded	stimulus	on	each	trial	followed	the	order	A>B>C>D>E.	If	
the	animal	represents	the	stimulus	order	rather	than	simply	the	results	of	the	experienced	pairs,	it	
can	correctly	infer	that	B	should	be	preferred	over	D.	Control	animals	make	this	inference	correctly,	
while	animals	with	lesions	that	separate	hippocampus	from	cortex	are	impaired	on	these	relational	
probes.	C)	Illustration	of	Mazes	that	permit	different	types	of	structured	inferences.	In	Maze	1,	
neither	of	the	first	two	trajectories	traverse	the	shortest	path	solution;	however,	pieces	from	the	
traversals	can	be	joined	to	compose	the	shortest	path.	In	similarly	structured	Maze	2,	the	observed	
trajectories	are	insufficient	to	compose	the	shortest	path.	However,	the	loop	closures	suggest	
topological	similarity	to	the	previously	observed	Maze	1.	This	similar	previously	experienced	
relational	structure	can	be	used	to	constrain	inference	in	the	new	maze	with	a	representation	that	
factors	observation	from	underlying	structure.	D)	Prior	experience	with	topological	features	can	be	
used	to	constrain	inference	in	non-spatial	environments	as	well.	For	instance,	exposure	to	the	
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abstract	notion	of	a	"high-degree	node,"	which	arises	in	many	different	types	of	social	networks,	can	
be	used	to	draw	conclusions	about	the	role	of	a	high-degree	individual	in	a	novel	network.	For	
instance,	a	queen	bee,	the	Queen	of	England,	and	Beyoncé	("Queen	Bey")	are	members	of	very	
different	social	networks,	but	fill	a	similar	role	of	influence	relative	to	other	individuals	in	the	
network.	E)	Humans	can	fluidly	chain	together	episodes	experienced	out	of	order	into	a	continuous	
narrative.	This	is	elegantly	illustrated	by	an	artist's	depiction	of	the	Plot	of	Kill	Bill	Vols	1&2,	arranged	
in	chronological	order	(Noah	Daniel	Smith,	www.noahdanielsmith.com).	Although	scenes	of	Kill	Bill	
are	seen	out	of	order,	such	that	early	scenes	depicting	some	event	are	qualified	by	later	scenes	
depicting	an	earlier	event,	a	viewer	can	integrate	these	scenes	into	a	coherent	narrative.	Other	films	
with	this	property	include	Memento	and	Pulp	Fiction	
(http://www.noahdanielsmith.com/pulpfiction/).	(F)	"Lines	of	cars”	by	Max	Behrens	aged	2.	
Organisation	within	each	line	suggests	that	structures	can	be	placed	within	other	structures.	This	
organisation	is	readily	visible	in	the	left-hand	line,	but	will	be	most	apparent	in	the	right-hand	line	to	
readers	with	domain	expertise	in	the	Disney	Film	Series	“Cars”.	
	
What	experiences	have	in	common	

Why	should	the	brain	learn	general	structural	representations	rather	than	build	a	
new	representation	for	each	task?	For	this	to	be	a	useful	strategy,	there	must	be	regularities	
in	the	world	that	can	be	profited	from.	And	indeed	there	are	–	the	world	is	brimming	with	
repetition	and	self-similarity	at	every	level	of	abstraction	(Figure	6).	Knowledge	can	be	
generalised	about	objects	and	concrete	entities	–	if	you	find	a	fish	in	a	lake,	it’s	worth	
checking	other	lakes	for	fish;	or	about	transition	structures	–	multiple	rooms	often	lead	from	
the	same	corridor;	or	about	the	relationship	between	objects	and	transitions	–	if	you	reach	
a	sad	point	of	a	film,	you	are	probably	about	half	way	in.	Repetitions	exist	in	the	
relationships	between	objects	–	if	two	people	are	friends	on	Facebook,	they	probably	follow	
similar	people	on	Twitter	(Figure	6C-D).	Crucially,	the	structures	that	organise	these	self-
repetitions	often	themselves	repeat	across	nature	(Kemp	and	Tenenbaum,	2008).	Tree-like	
organisation,	for	example,	can	be	found	in	families,	in	rumour-mills,	and	even	in	trees.	
“Small-world”	and	“scale-free”	properties	are	found	in	complex	systems	across	the	natural	
world	(Watts	and	Strogatz,	1998).		
	
Across	life,	then,	a	learner	faces	a	distribution	of	tasks	(Figure	7A),	and	this	distribution	is	
not	random	but	highly	structured.	Each	new	task	can	be	constrained	by	rich	prior	
information	from	previous	tasks.	Harlow’s	“learning	set”	is	a	clear	controlled	example.	In	
Harlow’s	experiment,	what	is	randomized	between	episodes	is	the	identity	of	each	object;	
while	what	is	constant	is	the	relationship	between	object	and	reward.	Harlow’s	
interpretation	of	“Learning	to	learn”	was	that	past	experience	drove	the	acquisition	of	
abstract	structure	–	for	example,	the	fact	that	"one	of	the	two	objects	is	always	rewarded"	–	
and	this	learned	representation	made	future	learning	more	efficient.	
	
Recent	approaches	in	artificial	neural	networks	have	demonstrated	that,	with	enough	
experience,	powerful	and	general	structural	representations	can	emerge	from	simple	
principles.	In	the	following	sections	we	will	highlight	some	of	these	principles	that	seem	
particularly	relevant	to	the	neuronal	representations	and	anatomical	constraints	that	can	be	
found	in	the	frontal	cortex	and	hippocampal	formation.		
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Learning	Structure	from	experience	
Deep	learning	techniques	can	learn	powerful	representations	of	tasks	that	closely	

resemble	biology	(Mante	et	al.,	2013;	Sussillo	et	al.,	2015;	Yamins	and	DiCarlo,	2016),	and	
there	are	several	approaches	for	adapting	these	techniques	to	learn	structural	knowledge.	
These	are	collectively	referred	to	as	meta-learning	(Andrychowicz	et	al.,	2016;	Finn	et	al.,	
2017;	Hochreiter	et	al.,	2001),	but	one	with	a	tantalizing	link	to	brain	function	is	meta-
Reinforcement	Learning	(meta-RL)	(Wang	et	al.,	2018)	(Box	1).		
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Figure	7:	Meta-learning	and	meta-reinforcement	learning.	A)	A	learner	faces	a	distribution	of	tasks	
that	share	common	underlying	structure.	Consider	again	the	Harlow	task.	In	any	individual	episode	
the	actual	sensory-motor-reward	contingencies	are	such	that	there	are	many	possible	algorithms	
that	would	work	to	obtain	reward.	For	example,	“always	choose	the	blue	object”,	or	“choose	the	left	
object	unless	the	left	object	is	different	from	last	time	and	the	square	object	is	on	the	right”,	etc	
(black	arrows).	However,	the	only	thing	that	is	common	across	all	of	the	different	task	episodes	is	
“one	of	the	two	objects	is	always	rewarded”	(red	arrow).	This	common	structure	is	what	meta-
learning	seeks	to	acquire,	to	facilitate	future	learning.	With	a	slow	enough	learning	rate,	such	that	
individual	task	episodes	do	not	dominate	the	learning,	the	result	is	that	a	solution	can	be	learned	
that	works	for	all	tasks.	B)	One	method	for	performing	meta-learning	is	meta-reinforcement	learning	
(meta-RL).	The	meta-RL	architecture	from	(Wang	et	al.,	2018)	consists	of	a	prefrontal	network	(PFN)	
modelled	as	a	recurrent	neural	network	(RNN)	with	synaptic	weights	adjusted	through	an	RL	
algorithm	(driven	by	dopamine,	DA).	At	each	time	step,	the	agent	receives	the	current	observation	o	
and	the	past	action	a	and	reward	r,	which	are	fed	into	a	recurrent	neural	network	that	outputs	an	
action	and	state	value	estimate	v.	This	RNN	learns	to	use	its	activation	dynamics	as	a	second	free-
standing	RL	algorithm,	adapted	to	the	task	distribution	on	which	it	is	trained.	C)	Through	training,	
meta-RL	learns	to	learn	faster	on	Harlow’s	task,	similar	to	the	monkeys	in	Figure	2B.	Adapted	from	
(Wang	et	al.,	2018).	D)	Meta-RL	provides	a	possible	explanation	for	how	individual	units	in	PFC	
become	tuned	to	various	task-related	variables.	Proportion	of	recorded	neurons	in	macaque	PFC	
with	sensitivity	to	last	action,	last	reward,	action-by-reward	interaction,	and	current	value	(Tsutsui	et	
al.,	2016).	Inset:	for	each	unit	in	the	trained	meta-RL	agent,	strength	of	correlation	with	the	same	
variables.	Adapted	from	(Wang	et	al.,	2018).	
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Meta-RL	solves	the	reinforcement	learning	problem	(maximise	expected	task	reward)	with	a	
recurrent	neural	network	(RNN)	whose	weights	are	trained	through	a	reward	prediction	
error	signal	(Figure	7B).	The	critical	insight,	however,	is	that	the	network	does	not	need	to	
change	its	weights	to	react	to	rewards	and	errors	in	solving	the	current	task.	Such	reactions	
can	instead	be	encoded	in	the	dynamics	of	the	network	–	because	an	RNN	can	provably	
implement	any	algorithm	(Siegelmann	and	Sontag,	1995),	it	can	implement	an	RL	algorithm	
if	it	is	trained	to	do	so.	The	network	weights	are	then	trained	to	maximise	reward	over	many	
different	tasks	by	setting	a	learning	rate	that	is	too	slow	to	accommodate	learning	within	a	
single	task,	but	appropriate	to	average	experience	across	many	tasks.			
	
The	consequence	of	this,	is	that	the	reward	prediction	error	signal	drives	the	weights	to	
encode	the	structure	that	is	common	across	episodes,	rather	than	information	about	any	
particular	sensory	inputs.	The	activation	dynamics	of	the	network	can	then	profit	from	this	
structure	to	produce	rapid	learning	in	each	task.	For	example,	in	Harlow’s	task,	like	the	
human	and	non-human	primates,	after	many	training	episodes	the	network	can	learn	to	
solve	the	problem	in	one	trial	(Figure	7C).	In	other	experiments,	Wang	et	al	also	found	that	
meta-RL	learned	abstract	notions	about	the	dynamics	of	the	environment,	independent	of	
its	current	state,	and	used	these	to	learn	more	efficiently	from	new	experience.		
	
This	observation	provides	a	potential	solution	to	an	intriguing	conundrum	in	the	
neuroscience	of	reinforcement	learning.	Dopamine	signals	a	reward	prediction	error	that	is	
assumed	to	cause	learning	but,	in	prefrontal	cortex	at	least,	triggers	synaptic	change	over	
the	wrong	timescale	–	tens	of	seconds	at	the	fastest	(Brzosko	et	al.,	2015;	Otmakhova	and	
Lisman,	1996;	Wang	et	al.,	2018;	Yagishita	et	al.,	2014)	when	behaviour	can	change	within	a	
few	seconds	or	less	(i.e.,	the	animal	gets	a	reward	and	immediately	changes	its	behaviour).	
Meta-RL	proposes	that	instead	of	driving	learning	directly,	the	role	of	dopamine	is	to	drive	
changes	in	the	learning	algorithm;	this	learning	algorithm	is	implemented	in	the	recurrent	
circuits	particularly	centring	on	the	prefrontal	cortex.		
	
Consistent	with	this,	when	the	meta-RL	agent	is	trained	on	typical	reward	learning	tasks,	
individual	units	in	the	network	acquire	tuning	properties	that	resemble	individual	PFC	units	
recorded	in	monkeys	in	the	same	task.	For	example,	in	a	foraging	task,	(Tsutsui	et	al.,	2016)	
found	a	variety	of	units	in	macaque	PFC,	with	some	coding	predominantly	for	value,	others	
for	previous	action,	others	for	reward,	and	still	others	for	an	action-by-reward	interaction.	
When	meta-RL	was	trained	to	perform	the	same	task,	individual	units	in	the	artificial	
network	spontaneously	acquired	tuning	for	these	variables,	with	a	similar	distribution	to	the	
monkey	neurons	(Tsutsui	et	al.,	2016)(Figure	7D).		
	
Factorisation	and	constraints	–	how	should	structural	knowledge	be	represented?	

It	is	of	course	possible	to	represent	relationships	between	objects	in	an	implicit	
fashion	–	encoded	in	the	synaptic	weights	between	object	representations.	For	example,	in	
sensory	preconditioning,	one	can	easily	imagine	scenarios	in	which	cells	that	form	the	
representation	of	object	A	form	new	synaptic	connections	to	those	that	encode	object	B.	
Indeed,	such	mechanisms	likely	do	exist	in	the	brain	(e.g.	in	(Grewe	et	al.,	2017)).	However,	
in	order	for	a	structural	abstraction	(such	as	the	linear	order	in	transitive	inference	and	
sensory	preconditioning,	or	the	2D-layout	of	physical-	and	bird-	space)	to	generalise	from	
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one	task	to	another,	its	representation	must	be	explicit	–	divorced	from	the	sensory	
properties	of	the	particular	task	in	question,	and	should	be	in	a	form	that	allows	it	to	impose	
its	constraints	on	any	new	sensory	environment	(Box	1).	One	way	to	enforce	such	a	
representation	mathematically,	is	to	require	representations	to	factorise,	such	that	the	
probability	distribution	of	activity	for	a	task	event	is	the	product	of	two	independent	
distributions	defining	the	sensory	and	structural	contributions	to	the	task.	Mathematically	
this	is:	

𝑃(𝑟!"#!$%& , 𝑟!"#$%"$#&) = 𝑃(𝑟!"#!$%&)𝑃(𝑟!"#$%"$#&)	
where	the	probability	is,	for	example,	defined	over	the	spiking	(r)	of	each	neuron	in	the	
representation.	Factorisation	facilitates	learning	because	it	dramatically	reduces	the	
dimensionality	of	the	representation	to	be	learnt,	and	allows	extreme	forms	of	
generalisation	outside	of	the	training	data.	For	example,	if	you	want	to	predict	how	your	
daughter	will	react	to	a	blue	cup	you	can	learn	the	blue	distribution	from	all	blue	things	(not	
just	cups)	and	the	cup	distribution	from	all	colours	(not	just	blue)	(Figure	8A).	Using	these	
two	independent	distributions,	you	can	predict	conjunctions	you	have	never	experienced	
(Figure	8B).	Similarly,	if	the	representation	of	a	line	is	factorised	from	the	representation	of	
the	elements	of	that	line	it	can	be	learnt	across	many	different	tasks	and	generalised	to	new	
ones.		
	
These	considerations	are	intriguing	when	considering	the	cellular	representations	that	can	
be	found	in	the	hippocampal	formation	and	its	inputs	(Manns	and	Eichenbaum,	2006)	
(Figure	8C).	In	the	brain	regions	that	precede	hippocampal	activity	by	one	or	a	small	number	
of	synapses,	representations	are	separated	(factorised)	into	structural	(spatial/contextual)	
representations	in	medial	regions	and	sensory	(object)	representations	in	lateral	regions.	By	
contrast	hippocampus	proper	contains	conjunctive	representations	of	object	in	structure.	
Cells	are	only	active	for	a	particular	object	in	a	particular	location	but	not	for	the	object	or	
location	alone	(Komorowski	et	al.,	2009;	Wood	et	al.,	1999).	Whilst	the	conjunctive	
hippocampal	representation	is	sufficient	to	fully	represent	the	current	episode	(importantly	
for	memory),	cortical	regions	that	summarise	the	statistics	of	these	episodes	(McClelland	et	
al.,	1995),	do	so	in	a	factorised,	data	efficient	manner	that	can	be	conjoined	in	hippocampus	
to	represent	episodes	that	have	never	been	experienced.			
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By	modelling	such	a	factorised	system	in	a	neural	network,	it	is	possible	to	examine	the	
properties	of	the	structural	representations	(Whittington	et	al.,	2018).	Just	like	the	rodents	

Figure	8:	Factorised	and	conjunctive	codes.	A)	Entities	in	the	world	can	be	factorised	in	to	
independent	distributions	defining	the	dimensions	of	these	entities.	For	example,	different	objects	
may	be	factorised	according	to	how	‘cuppy’	they	are	as	well	as	their	colour.	B)	Factorisation	allows	
generalisation	to	as	yet	unseen	conjunctions.	For	example,	it	is	easy	to	imagine	young	children	with	
unusual	colour	preferences,	such	as	Max	and	Lana	(Min)	Behrens.	C)	The	functional	
representations	in	the	hippocampal-entorhinal	system	are	suggestive	of	factorisation	and	
conjunction.	In	the	hippocampal	inputs,	medial	regions	code	structure	devoid	of	sensory	
information,	lateral	regions	code	sensory	information	devoid	of	structure.	These	are	combined	in	a	
conjunctive	code	in	hippocampus.	Figure	adapted	from	(Manns	and	Eichenbaum,	2006).	HPC	=	
hippocampus,	MEC	=	medial	entorhinal	cortex,	LEC	=	lateral	entorhinal	cortex,	PER	=	perirhinal	
cortex,	POR	=	postrhinal/parahippocampal	cortex.	D)	Denotes	this	separation	in	a	simple	task	
environment	containing	a	graph	with	different	objects	at	the	vertices.	E)	An	artificial	neural	
network	that	explicitly	encourages	factorised	and	conjunctive	codes	learns	units	with	properties	
similar	to	grid	and	place	cells.	Units	representing	the	structure	of	the	environment,	in	this	case	a	
2D	topology,	have	periodic	firing	fields	similar	to	grid	cells	(a	square	rather	than	triangular	lattice	is	
learned	due	to	a	four	way	connected	space).	Units	coding	for	the	conjunction	between	the	learned	
structure	and	sensory	events	exhibit	remapping,	similar	to	place	cells.	Adapted	from	(Whittington	
et	al.,	2018).	
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we	discussed	earlier,	when	tasked	with	predicting	the	next	sensory	event	in	a	2D	random-
walk,	the	network	can	profit	from	knowledge	of	the	2D	spatial	structure;	for	example,	it	can	
know	(/infer)	such	things	as	if	I	go	up,	left,	down	and	right	I	will	be	back	in	the	same	place.	
This	allows	for	correct	predictions	of	sensory	events	when	re-visiting	states,	even	when	
approaching	from	an	entirely	new	direction	–	knowing	the	structure	means	knowing	where	
you	are	in	the	space.	To	do	this	the	network	must	learn	a	factorised	representation	of	the	
structure.	This	structural	representation	can	then	be	combined	with	sensory	events	in	a	
conjunctive	code	to	form	different	memories	at	different	places	in	different	rooms.	The	
learnt	structural	representations	include	periodic	cells	(similar	to	grid	cells)	(Figure	8D),	but	
also	cells	that	resemble	boundary	cells	and	boundary	vector	cells.	Since	sensory	events	may	
occur	in	different	locations	in	different	rooms,	the	conjunction	between	a	given	sensory	
event	and	the	structural	representation	may	be	in	a	different	location	across	rooms.	
Therefore	the	conjunctive	units	naturally	exhibit	remapping	(Figure	8D),	analogous	to	the	
firing	of	place	cells	in	different	environments.	It	is	possible,	then,	that	at	least	some	of	the	
cell-types	that	make	up	the	rich	spatial	representation	in	the	hippocampal	formation	can	be	
accounted	for	by	structural	considerations	that	generalise	to	arbitrary	non-spatial	problems.		
	
Structural	bases	and	the	hippocampal	zoo	

We	have	argued	that	repeating	structural	constraints	on	tasks	should	be	embedded	
explicitly	in	the	neural	code,	and	that	entorhinal	cells	provide	examples	of	such	a	
representation.	For	simple	tasks	(such	as	reversal	learning	or	object	discrimination),	it	is	
possible	for	the	brain	to	represent	the	exact	transitions	from	one	state	to	the	next,	but	this	
strategy	will	break	as	soon	as	anything	changes	in	this	structure.	For	example,	the	
appearance	of	a	shiny	object	dramatically	changes	the	transition	statistics	of	all	tasks	if	you	
are	a	magpie.	More	prosaically	although	boundaries	always	have	the	same	effect	on	
transitions,	they	might	do	so	in	different	parts	of	the	state	space	in	different	environments.	
One	solution	to	this	problem	is	to	think	of	the	entorhinal	cells	as	a	basis	set	(Box	1)	for	
describing	the	current	transition	structure,	so	that	different	combinations	of	cellular	activity	
can	represent	the	different	structural	constraints	of	different	environments	(similar	to	how	
cells	in	primary	visual	cortex	represent	a	basis	for	describing	the	pixel	distributions	in	
natural	images	(Olshausen	and	Field,	1996)).	These	bases	will	capture	common	features	
across	tasks	and	whilst	the	most	reliable	of	these	features	will	be	most	strongly	represented	
(such	as	the	translational	and	scale	invariance	of	grid	cells),	there	will	also	be	more	minor	
representations	of	features	that	have	less	prominent	structural	influence.	Indeed,	recent	
evidence	suggests	that	activity	in	many	entorhinal	cells	that	are	hard	to	classify	into	easily	
interpretable	cell	types,	are	nevertheless	linearly	predictive	of	task-relevant	behavioural	
variables	(Hardcastle	et	al.,	2017).	When	starting	a	new	task,	the	recurrent	neural	network	
in	the	Entorhinal	cortex	may	represent	an	initial	guess	at	the	task	structure,	from	which	the	
hippocampus	can	form	conjunctive	codes	and	memories.	With	task	experience,	a	more	
appropriate	weighting	of	the	basis	functions	can	be	inferred,	and	thus	task	structure	more	
correctly	approximated	(Barry	et	al.,	2012).	This	interpretation	is	consistent	with	the	strong	
attractor	dynamics	apparent	in	the	grid	cell	network	(Burak	and	Fiete,	2009)	as	grid	cells	
embed	the	relationships	that	are	the	most	prevalent	amongst	spatial	tasks.	Given	known	
hippocampal	involvement	in	primate	behaviours	with	markedly	different	statistical	
structure	from	space	(such	as	social	tasks),	it	is	possible	that	other	statistical	features	are	
also	similarly	deeply	embedded.		
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What	should	be	built	by	evolution,	and	what	should	be	learnt	from	your	environment?	
Learning	about	structure	and	assuming	constraints	are	highly	complementary.	The	

more	abstract	(further	from	observations)	a	structure	is,	the	harder	it	is	to	learn	(Raghu	et	
al.,	2016),	but	such	abstractions	can	be	easily	hard-coded	by	evolution.	For	example,	the	
factorisation	of	relationships	from	objects	in	the	cortical	code	immediately	bestows	the	
abstract	principle	that	“Different	pairs	of	objects	might	have	relationships	in	common”.	To	
obtain	such	an	abstract	bias	with	meta-learning	alone	can	be	extremely	difficult	because	it's	
hard	to	make	such	a	diverse	task	distribution	that	this	principle	is	the	only	thing	the	tasks	
have	in	common.	Indeed,	modern	machine	learning	techniques	are	exploring	how	to	hard	
code	these	abstract	biases	into	artificial	neural	networks.	For	example,	the	current	state	of	
the	art	in	Starcraft	II	(a	multiplayer	real-time	strategy	game	set	in	a	distant	part	of	the	Milky	
Way)	was	achieved	by	adding	a	relation	network	component	that	employs	exactly	this	
principle	(Zambaldi	et	al.,	2018).	By	contrast,	meta-learning	is	better	suited	for	discovering	
complex	biases	that	are	difficult	to	program	directly,	and	which	may	be	unexpected	
properties	of	task	families	of	interest.	
	
These	two	different	strengths	play	well	together.	Starting	with	abstract	architectural	biases	
can	make	other,	more	specific	or	complex	biases	easier	to	meta-learn	(Zambaldi	et	al.,	
2018),	and	can	encourage	more	generalisable	structural	representations	to	emerge.	Indeed,	
the	representations	learned	in	the	factorised	network	described	above	(Whittington	et	al.,	
2018)	are	basis	functions	(as	are	those	found	in	(Banino	et	al.,	2018)),	which	generalise	to	
environments	of	different	sizes.	Pure	meta-learning	without	any	inductive	biases,	however,	
may	require	a	broader	task	distribution	to	learn	such	generalisable	representations.	Thus,	
evolution	should	provide	architectural	biases	that	facilitate	generalisable	structure	learning.	
	
It	is	still	unclear	how	much	of	the	bias	observed	in	the	brain	–	like	a	belief	in	relational	
structure	–	is	completely	hard-coded	versus	learned	through	early	life	experience.	It	is	of	
course	possible	that	particular	structural	constraints	that	apply	broadly	across	natural	tasks	
(such	as	2D	maps,	ordinal	lines,	hierarchies)	have	been	favoured	on	evolutionary	timescales,	
and	are	therefore	hardwired	into	cortical	connectivity.	Such	an	argument	might	explain	the	
precise	anatomical	arrangement	of	grid	cell	modules	along	the	dorsal-ventral	axis	of	
entorhinal	cortex	(Brun	et	al.,	2008).			
	
	
Implications	for	the	cognitive	map		
	

In	the	remainder	of	this	review,	we	would	like	to	take	a	more	speculative	position	
and	consider	what	implications	the	structural	abstractions	we	have	discussed	above	might	
have	on	the	“systematic	organisation	of	knowledge”	that	Tolman	envisaged.	This	
organisation	clearly	encompasses	much	more	than	the	representation	of	structural	
abstractions,	but	these	structures	constrain	how	concrete	objects	and	actions	will	be	
combined.	These	constraints	not	only	allow	objects	to	be	configured	into	meaningful	
current	or	future	events,	but	also	provide	a	powerful	means	to	generalise	learning	from	
sparse	observations.		
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Inferential	planning		
In	both	machine	learning	(Kocsis	and	Szepesvári,	2006;	Silver	et	al.,	2016;	Sutton	and	

Barto,	1998)	and	neuroscience	research	(Daw	et	al.,	2005,	2011),	it	is	often	assumed	that	
planning	your	future	involves	searching	through	a	tree	of	possible	states	and	discovering	the	
best	one.	This	process	is	so	costly	as	to	be	impossible	in	most	reasonable	circumstances,	so	
an	alternative	is	to	estimate	a	cached	value	of	states	that	are	your	immediate	neighbours	or	
neighbours	to	some	depth	(Huys	et	al.,	2015;	Keramati	et	al.,	2016).	Armed	with	structural	
knowledge,	however,	it	is	possible	that	plans	can	be	built	into	representations	in	an	
analogous	fashion	to	the	representation	of	objects	on	transitive-inference	lines.	The	
planning	process	now	becomes	an	inference	of	what	should	go	where	on	the	line.	This	
inference	is	further	constrained	by	domain-specific	structural	knowledge	of	relationships	
between	items.	When	planning	a	lab,	a	PI	does	not	search	through	every	possible	
arrangement,	but	instead	knows	that	they	should	hire	the	theorist	before	the	
experimentalist	to	avoid	wasted	experiments,	and	the	experimentalist	before	the	data	
scientist	to	avoid	twiddled	thumbs.	By	constraining	the	representations	of	the	different	
objects	(postdocs!)	by	this	relational	knowledge,	the	number	of	possible	futures	are	limited.		
If	similar	structural	knowledge	(A	relies	on	B)	has	been	used	in	previous	plans	such	as	
building	a	house	(foundations,	walls,	windows)	then	all	that	is	necessary	to	build	the	new	
plan	is	for	the	object’s	representation	to	contain	information	about	which	other	objects	this	
structural	knowledge	applies	to.	The	new	plan	can	then	be	generalised	(inferred)	from	the	
old.	This	idea	is	an	extension	of	ideas	in	psychology,	where	object	representations	are	
assumed	to	encompass	possible	actions	that	the	object	‘affords’	(Gibson,	1966).	The	
representation	of	the	word	“apple”	for	example,	might	include	activity	that	represents	the	
facial	movements	required	to	eat	it,	and	the	hand	position	required	to	grip	it.	In	this	way,	
infinite	possible	actions	are	reduced	to	only	a	few	likely	ones	conditioned	on	the	objects	
currently	available.		
	
Placed	together	with	structural	and	relational	knowledge,	however,	such	representations	
would	provide	dramatic	constraints	on	possible	long-term	futures	and	powerful	
generalisations	to	novel	scenarios.	Whilst	there	is	little	experimental	evidence	along	these	
lines	to	date,	it	is	notable	that	what	evidence	there	is	centres	on	the	hippocampus	and	
ventromedial	prefrontal	cortex.	These	regions	are	active	during	both	reconstructive	
memory	and	constructive	imagination	(Buckner	and	Carroll,	2007)	and	without	these	
regions	people	can’t	construct	imagined	futures	(Hassabis	et	al.,	2007).	Indeed,	when	
subjects	imagine	the	taste	of	a	new	food	that	they	have	never	experienced	but	is	
constructed	from	known	ingredients	(such	as	Tea-Jelly),	both	regions	show	evidence	that	
cellular	ensembles	for	the	ingredients	are	active	simultaneously	(Barron	et	al.,	2016).		

	
The	examples	above	give	a	sense	of	the	power	of	combining	different	structural	
representations	(here	lines	and	reliances)	and	of	the	same	structural	representations	being	
generalised	across	domains.	The	logic	is	similar	in	spirit	to	arguments	made	about	the	
compositional	nature	of	human	visual	understanding,	where	known	elements	can	be	
composed	into	new	objects	that	can	be	immediately	understood	with	no	prior	experience	
(Lake	et	al.,	2015,	2017).	This	analogy,	however,	highlights	the	importance	of	a	feature	of	
structural	coding	emphasised	in	earlier	sections.	In	order	for	structures	to	play	an	analogous	
role	in	compositional	planning	as	objects	do	in	compositional	vision,	they	cannot	be	
encoded	solely	in	the	synaptic	weights	between	object	representations.	They	must	be	
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represented	explicitly,	as	are	the	objects	that	they	act	upon.	Indeed	this	blurring	of	the	line	
between	of	objects	and	structures	is	a	powerful	feature	of	human	cognition,	allowing	us	to	
reason	about	structures	and	relationships.	A	marriage,	for	example,	is	a	concrete	event,	or	a	
structure	for	organising	our	social	knowledge,	or	a	profound	set	of	constraints	on	future	
behaviour.	
	
Structural	inferences	for	generalised	learning	

It	is	possible,	then,	for	futures	to	be	inferred	(or	generalised)	rather	than	planned.	By	
corollary,	sparse	observations	can	cause	profound	learning	when	constrained	by	structural	
knowledge.	When	reports	of	Austrian	nobles	crossing	the	Pyrenees	reached	Louis	XIV	of	
France,	he	was	able	to	use	the	same	structural	relation	(A	relies	on	B	–	here	wedding	relies	
on	guests)	to	infer	a	proposed	alliance	between	the	Spanish	and	Holy	Roman	Empires.	His	
subsequent	plan	to	detain	the	bride-to-be	at	Versailles	(inferred,	presumably	from	the	same	
relationship	applied	to	brides	rather	than	guests)	led	to	the	War	of	the	Spanish	succession	
(at	least	in	the	BBC’s	interpretation	(BBC,	2018)).	By	filtering	experiences	through	a	scaffold	
of	relational	knowledge,	precise	inferences	can	be	drawn	from	little	data	(Lake	et	al.,	2015).				
	
If	structures	and	relations	are	represented	explicitly,	however,	there	is	the	potential	for	
inference	at	dramatic	levels	of	abstraction.		The	social	experience	of	watching	a	parent	
cajoling	a	child	to	new	bravery,	for	example,	can	be	replicated	even	when	people	or	animals	
are	replaced	with	abstract	shapes	(Heider	and	Simmel,	1944).	The	dynamic	relationship	
between	the	two	triangles	on	the	screen	is	sufficient	for	us	to	infer	the	roles	of	parent	and	
child	and	the	motives	and	emotions	of	each.	As	with	the	non-spatial	grid	cells	described	
earlier,	a	structure	(albeit	a	more	complex	and	dynamic	one)	that	is	evolved	or	learnt	to	
describe	the	behaviour	in	one	setting,	can	be	generalised	to	a	completely	different	domain.	
Whilst	it	might	seem	initially	mysterious	why	there	is	an	evolutionary	benefit	to	infer	social	
dynamics	between	triangles,	or	2	dimensions	of	birds,	it	is	clear	that	the	ability	to	infer	
structural	analogies	between	disparate	situations	has	profound	consequences	for	learning.	
Getting	saved	by	a	bicycle	helmet	might,	for	example,	make	you	more	likely	to	wear	a	safety	
jacket	next	time	you	are	on	a	boat,	or	to	take	out	home	insurance	next	time	you	are	at	your	
computer.		In	modern	artificial	intelligence	research,	there	is	a	substantial	effort	to	discover	
learning	rules	that	ensure	“continual	learning”	–	that	is	learning	rules	that	enable	new	tasks	
to	be	learnt	by	networks	without	destroying	old	ones	(Kirkpatrick	et	al.,	2017;	Zenke	et	al.,	
2017).	In	our	view,	structural	abstractions	and	inferences	are	a	key	element	to	this	
endeavour.		
	
	

It	takes	a	particularly	dramatic	form	of	selective	attention	to	be	a	cognitive	
neuroscientist.	When	a	subject	walks	into	the	laboratory,	reads	a	complex	set	of	instructions	
and	effortlessly	translates	them	into	a	complex	sequence	of	future	events	and	actions	to	be	
performed	inside	a	13-tonne	sarcophagus	that	they	happily	enter	because	a	stranger	has	
told	them	it	is	safe,	it	takes	an	unusual	degree	of	restraint	to	choose	to	study	neural	activity	
when	the	same	subject	receives	payments	that	differ	by	15	pence.	When	animals	in	the	wild	
are	capable	of	building	sophisticated	networks	of	burrows,	for	example,	or	allegiances,	it	
takes	a	similar	degree	of	focus	to	choose	to	study	how	they	navigate	an	open	1m	square,	or	
whether	they	prefer	one	stimulus	to	another	after	several	months	of	training.		This	selective	
attention	has,	however,	been	profitable	because	it	has	allowed	experiments	to	be	
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performed	in	a	theoretical	framework	where	they	can	build	on	one-another	in	a	formal	
sense.	We	envisage	that	the	nascent	emergence	of	formalisms	to	describe	more	complex,	
flexible	behaviours	will,	similarly,	provide	a	framework	for	profitable	experiments	in	this	
broader	behavioural	sphere,	and	further	encourage	the	exciting	re-emergence	of	
collaborations	between	protagonists	of	artificial	and	biological	intelligence.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/365593doi: bioRxiv preprint first posted online Jul. 10, 2018; 

http://dx.doi.org/10.1101/365593


Box	1	
	
Clarifying	the	terminology	
	
States	of	the	world.	A	state	is	a	possible	configuration	of	the	world.		Whilst	the	true	state	of	
the	world	is	complex	and	high	dimensional,	only	a	very	small	part	of	this	state	is	relevant	to	
the	animal	performing	a	task.	The	animal	therefore	has	a	state	definition	problem.	If	they	
can	give	different	names	to	states	in	which	these	relevant	dimensions	are	different	but	the	
same	names	to	states	which	only	differ	in	irrelevant	dimensions,	they	will	dramatically	
reduce	the	learning	problem,	whichever	learning	algorithm	they	employ.	For	example,	a	
waiter	learning	efficient	strategies	for	opening	wine	bottles	should	have	separate	states	for	
corks	vs	screw-tops	but	not	for	red	vs	white	contents.	This	way	they	will	learn	fastest	
because,	with	two	states	rather	than	one,	they	will	be	able	to	learn	two	different	strategies	
and,	with	two	states	rather	than	four,	they	will	have	twice	as	much	experience	on	each	
strategy.	
	
Latent	states.	Problems	arise	when	these	relevant	dimensions	are	not	observable.		Whilst	
waiters	can	often	see	the	tops	of	their	wine	bottles,	there	is	little	immediate	sensory	data	to	
tell	a	driver	whether	they	can	or	cannot	use	the	bus	route.	One	solution	to	this	problem	is	
for	the	driver	to	build	different	latent	states	that	allow	different	routes	to	be	planned	
during	commuting	and	non-commuting	times.	
	
Models	of	the	world.	A	model	of	a	world	is	an	internal	representation	the	world’s	structure	
that	can	be	used	to	predict	future	states	of	the	world.	A	good	model	encompasses	a	
parsimonious	state	definition	but	also	an	understanding	of	how	each	state	transitions	to	
the	next.	This	is	usually	expressed	as	p(s’|s,a),	the	probability	that	each	state	will	transition	
to	each	other	state	if	you	choose	action	a.		If	you	have	such	a	model	you	can	clearly	plan	
your	future,	but	you	can	also	learn	more	efficiently	as	the	model	places	strong	constraints	
on	possible	explanations	of	sensory	data.	If	the	cake	is	burnt,	it	is	unlikely	to	be	due	to	the	
extra	spoonful	of	sugar.	
	
Learning	set	describes	accrued	knowledge	from	prior	tasks	that	allows	for	stereotyped	
learning	on	new	tasks.	If	an	animal	arrives	at	a	new	task	equipped	from	prior	tasks	with	a	
model	of	the	task,	or	even	with	a	parsimonious	state	representation,	they	will	learn	the	new	
task	much	faster.		In	Harlow’s	example,	this	learning	set	came	from	prior	experience	of	the	
exact	same	task,	but	it	is	clear	that	knowledge	can	be	generalised	across	different	tasks	that	
share	features	(Figure	2F).	Faced	with	a	screw-driver,	it	is	likely	advantageous	to	have	learnt	
to	open	a	bottle.		
	
Meta-learning	is	the	machine	learning	term	for	learning	set,	whereby	features	that	are	
common	amongst	many	tasks	are	exploited	to	speed	up	learning	on	a	particular	task	
instance.	There	are	a	number	of	approaches	to	meta-learning.		One	example	is	meta-
reinforcement	learning	(meta-RL)	in	which	meta-learning	is	driven	by	reward	prediction	
errors.	More	general	forms	of	meta-learning	might	also	be	driven	by	sensory	observations.		
In	machine	learning,	meta-learning	can	be	used	to	tune	synaptic	weights,	but	also	to	tune	
neural	architectures	resulting	in	interesting	parallels	with	learning	over	the	lifespan	and	
adaptation	over	evolutionary	timescales	respectively.	
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Factorised	representations	

For	a	learning	set,	separating	the	structural	representation	from	the	representation	
of	sensory	particularities	of	the	task	facilitates	reusing	the	structural	representation	in	
related	tasks.	Factorisation	is	one	way	to	achieve	this	separation.	Here	the	probability	
distribution	of	the	task	is	a	product	of	two	independent	distributions	describing	the	
model/structural	and	sensory	contributions:	 

𝑃(𝑟!"#!$%& , 𝑟!"#$%"$#&) = 𝑃(𝑟!"#!$%&)𝑃(𝑟!"#$%"$#&)	
Having	learned	both	component	distributions,	flexible	generalisation	can	be	made	to	
entirely	new	task	conjunctions,	for	example	a	different	arrangement	of	sensory	events	
(Figure	8A-B).	Such	representations	are	reminiscent	of	the	separation	of	structural	from	
sensory	information	in	the	cortices	surrounding	hippocampus	(Figure	8C),	and	are	
consistent	with	the	reuse	of	structural	information	across	different	rooms	in	remapping	
experiments	in	medial	entorhinal	cortex	(but	not	hippocampus)	(Figure	3A).		
	
Basis	representations	
If	learning	set	can	act	across	different	tasks,	then	the	representation	of	the	model	cannot	be	
a	hardcoded	state	diagram.	It	must	be	flexible	such	that	new	tasks	can	be	constructed	from	
combinations	of	elements	of	old	tasks.	These	are	termed	bases	and	should	represent	
common	features	of	tasks	in	a	manner	that	allows	flexible	recombination.	This	broad	
definition	encompasses	bases	for	how	features	should	be	combined	into	a	state	definition	
(different	bottle	tops	should	imply	different	states)	but	also	bases	for	common	patterns	of	
transition	structure	in	the	world	(1D,	2D,	tree	etc),	and	for	how	state	features	impact	on	
this	transition	structure	(animals	tend	to	approach	interesting	objects,	and	are	unlikely	to	
walk	through	walls).	These	last	two	types	of	bases	appear	to	have	commonalities	with	
entorhinal	cell	populations.	
	
Eigenvector	basis	
One	important	basis	representation	is	the	eigenvector	basis,	as	it	is	the	linear	basis	that	
explains	the	most	variance	in	the	data	per	basis	function	(or	cell!)	and	is	therefore	a	
particularly	efficient	way	to	represent	the	structure	of	a	task.	An	interesting	recent	
observation	is	that	the	eigenvectors	of	the	transition	function	of	2D	space	have	strong	
similarities	to	grid	cells	(Figure	5).	
	
Structural	inference	
When	encountering	a	new	task,	animals	should	infer	what	structural	knowledge	they	should	
use	to	guide	their	decisions.	They	can	do	this	either	by	inferring	structure	by	observed	
sensory	features	(in	a	restaurant,	it	is	likely	that	the	eating	will	follow	the	sitting),	or	
inferring	structure	from	observed	transitions	(what	is	next	in	the	sequence	2,4,6,8,10,…	?),	
or	a	combination.	In	reinforcement	learning,	the	inferred	structure	can	be	used	to	define	
the	possible	state	spaces	and	constrain	the	possibilities	of	relations	between	different	states	
while	learning	the	state	space	of	a	new	task.	In	this	paper,	we	suggest	that	having	an	explicit	
representation	of	structure	(in	the	form	of	structural	bases)	can	help	in	solving	such	
inference	problems	and	therefore	in	learning	new	state	spaces.	
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